labvanced logoLabVanced
  • Research
    • Publications
    • Researcher Interviews
    • Use Cases
      • Behavioral Psychology
      • Personality & Social Psychology
      • Cognitive & Neuro Psychology
      • Developmental & Educational Psychology
      • Clinical & Health Psychology
      • Sports & Movement Psychology
      • Marketing & Consumer Psychology
    • Labvanced Blog
  • Technology
    • Feature Overview
    • Desktop App
    • Phone App
    • Precise Timing
    • Experimental Control
    • Eye Tracking
    • Multi User Studies
    • More ...
      • Questionnaires
      • Artificial Intelligence (AI) Integration
      • Mouse Tracking
      • Data Privacy & Security
      • Text Transcription
  • Learn
    • Guide
    • Videos
    • Walkthroughs
    • FAQ
    • Release Notes
    • Documents
    • Classroom
  • Experiments
    • Public Experiment Library
    • Labvanced Sample Studies
  • Pricing
    • Pricing Overview
    • License Configurator
    • Single License
    • Research Group
    • Departments & Consortia
  • About
    • About Us
    • Contact
    • Downloads
    • Careers
    • Impressum
    • Disclaimer
    • Privacy & Security
    • Terms & Conditions
  • Appgo to app icon
  • Logingo to app icon
Learn
ガイド
ビデオ
ウォークスルー
FAQ
リリースノート
教室
  • 中國人
  • Deutsch
  • Français
  • Español
  • English
  • 日本語
ガイド
ビデオ
ウォークスルー
FAQ
リリースノート
教室
  • 中國人
  • Deutsch
  • Français
  • Español
  • English
  • 日本語
  • ガイド
    • はじめに

      • オブジェクト
      • イベント
      • 変数
      • タスクウィザード
      • トライアルシステム
      • 研究デザイン
        • タスク
        • ブロック
        • セッション
        • グループ
    • 特集トピック

      • ランダム化とバランス
      • 視線追跡
      • 質問票
      • デスクトップアプリ
      • サンプル研究
      • 参加者募集
      • APIアクセス
        • REST API
        • Webhook API
        • WebSocket API
      • その他のトピック

        • 正確な刺激タイミング
        • マルチユーザー研究
        • Labvancedにおけるヘッドトラッキング | ガイド
    • メインアプリタブ

      • 概要: メインタブ
      • ダッシュボード
      • マイスタディ
      • 共有スタディ
      • マイファイル
      • 実験ライブラリ
      • マイアカウント
      • マイライセンス
    • 研究タブ

      • 概要: 研究特有タブ
      • 研究デザイン
        • タスク
        • ブロック
        • セッション
        • グループ
      • タスクエディタ
        • 主な機能と設定
        • トライアルシステム
        • キャンバスとページフレーム
        • オブジェクト
        • オブジェクトプロパティテーブル
        • 変数
        • システム変数テーブル
        • イベントシステム
        • 試行のランダム化
        • テキストエディタの機能
        • タスクにおけるアイ・トラッキング
        • タスクにおける頭追跡
        • マルチユーザー研究
      • 研究設定
        • スタートアップとメイン設定
        • ブラウザとデバイスの設定
        • 実験機能設定
      • 説明
        • 説明情報の詳細
        • 説明における画像、リンク、および参照
      • 変数
      • メディア
      • 翻訳
      • 実行
      • 公開と記録
        • Labvancedでの研究の公開に関する要件
        • 参加者の募集とクラウドソーシング
        • ライセンスの選択と確認
        • あなたのLabvanced研究を公開した後
      • 共有
      • 参加者
      • データビューとエクスポート
        • Dataview と変数 & タスクの選択 (古いバージョン)
        • 録音へのアクセス (古いバージョン)
  • ビデオ
    • ビデオ概要
    • Labvancedではじめる
    • タスクの作成
    • 要素ビデオ
    • イベントと変数
    • 高度なトピック
  • ウォークスルー
    • イントロダクション
    • ストループタスク
    • レキシカルデシジョンタスク
    • ポズナー凝視手掛かり課題
    • 変化盲点フェーズ
    • 視線追跡サンプル研究
    • 乳児視線追跡研究
    • マウストラッキングを用いた注意のキャプチャ
    • 迅速な連続視覚提示
    • ChatGPT研究
    • 視線追跡デモ: AOIとしてのSVG
    • マルチユーザーデモ: 研究内での被験者のカーソル表示
    • ゲームパッド / ジョイスティックコントローラー - 基本セットアップ
    • EEG統合を伴うデスクトップアプリの研究
    • 被験者間のグループバランスと変数設定
  • FAQ
    • 機能
    • セキュリティとデータプライバシー
    • ライセンス
    • Labvancedの精度
    • プログラム利用とAPI
    • Labvancedをオフラインで使用する
    • トラブルシューティング
    • 研究作成に関する質問
  • リリースノート
  • 教室

タスクにおけるアイ・トラッキング

説明

タスクエディターの左上側パネルで、物理信号メニューの横にある「編集」をクリックすると、アイ・トラッキングの設定にアクセスできます。

eyetracking

タスクでアイ・トラッキングを有効にするには、「このタスクでアイ・トラッキングを有効にする」チェックボックスにチェックを入れてください。研究が始まる前に、参加者は使用したいウェブカメラを選択するよう促され、接続された外部ウェブカメラと内蔵システムを選択できます。アイ・トラッキングが有効な最初のタスクが始まる前に、主要なアイ・トラッキングのキャリブレーションが自動的に行われます。さらに、このタスクに対してアイ・トラッキングを有効にすると、各試行の前に頭の向きがチェックされます。

複雑な形状をマスクやAOIとして使用するためのSVGとポリゴン

デザインプロセスの一環として、マスクやAOIとして機能する複雑な形状を作成するために、SVGとポリゴンの形状オブジェクトを利用することを検討するかもしれません。SVGはLabvancedにアップロードでき、ポリゴンはアプリエディター内で直接描くことができます。これらの2つのオプションを使用すると、複雑な形状/領域を作成し、それらをLabvancedでのアイ・トラッキング実験の基盤として使用できます。

たとえば、ポリゴン形状を「トリガー」として実装することで、参加者がそれに注視するたびに、その注視をカウントする変数が1増加します!このデモの設定方法は、ここで確認できます:https://www.labvanced.com/page/library/61117 「検査」をクリックしてタスクの構造を確認したり、「参加」をクリックして参加したりできます。下の画像はデモの結果を示しています。

Example of an eye tracking demo in Labvanced using fixations

上記のデモでは、最も速いキャリブレーション設定が使用されているため(約1分)、実験を迅速に進めることができます。

試行間注視

タスクのアイ・トラッキング設定で、試行間に表示する注視の数を定義できます。これらの試行間注視には以下の目的があります:

  • 各試行の前にアイ・トラッキングの精度を計算するために使用されます。
  • 「試行ごとのドリフト補正」を有効にすると、ドリフトは表示された注視点と予測された視線位置の中央値の差として計算されます。次の試行中のすべての視線予測は、この推定されたオフセットによって自動的に補正されます。

アイ・トラッキングの記録

以下は、視線位置の[X,Y]座標のタイムシリーズを記録するための推奨方法です。

  • トリガー「アイ・トラッキング」を使用してイベントを作成します。これは、新しい視線位置が予測されるたびに自動的に実行されます。
  • 新しい視線位置を記録するには、「変数の設定/記録」アクションを追加します。このアクションでは、左側で視線位置を保存するための新しい記録変数を作成します。
    • x座標とy座標のペアを保存するには、フォーマット「配列」を選択するのが最適です。
    • 時間の経過とともにすべての視線位置を記録したい場合は、記録タイプを「すべての変更/タイムシリーズ」に切り替えます。
  • アクションの右側の値選択メニューで、「アイ・トラッキング」サブメニューから「最後の座標[X,Y]配列」を選択します(図を参照)。

recording eyetracking

結果として記録される視線座標は、フレーム上の要素を配置するために使用された設計単位であり、視線座標を刺激位置に簡単に関連付けることができます。

データ出力

視線データごとに記録される4つの基本値があります:

  • X: フレーム単位でのx(水平)位置
  • Y: フレーム単位でのy(垂直)位置
  • T: 視線の正確/修正されたタイムスタンプ
  • C: 視線検出の信頼度(0は目の閉じまたは顔/目が見えないことを示し、1は100%の信頼性を示します)

アイ・トラッキングの精度

予測された視線座標の精度は、異なる被験者やそれぞれの環境(照明やカメラ)によって異なるため、予測誤差の推定値を提供します。これらの推定誤差は、「変数の設定/記録」アクションの右側の値選択メニューでアクセスできます。誤差値は、予測された視線座標と表示されたターゲット注視位置との間の平均ユークリッド距離です。これらのユークリッド距離に加えて、水平([X])または垂直([Y])誤差成分のみの誤差推定値もあります。誤差値には2つのタイプがあります:

  • 「エラーキャリブレーション...」値は、初期キャリブレーション期間中にキャプチャされた注視の検証セットを使用して計算されます。
  • 「エラー試行...」値は、試行間注視を使用して計算されます。
Prev
テキストエディタの機能
Next
タスクにおける頭追跡